
Research Paper

Understanding the impact of a Semantic Layer
in Agentic API Orchestration accuracy



Introduction



We recently completed a large scale study into the accuracy of leading LLM’s at planning
orchestration under real-world conditions.

This paper presents the research, the methodology, and results.

Introduction

How good are LLM’s at building a plan
requiring orchestrating multiple APIs
together?



How well do LLM’s perform at API orchestration when facing real-world
complexity (hundreds of endpoints)?

Research Goal
We wanted to answer three key questions:

Does adding semantic metadata improve their accuracy?

Does the adoption of a declarative orchestration language make a
difference?

1
2
3



Executive Summary
4 key takeaways from our research



Planning accuracy falls to
unusable levels between
60 to 300 endpoints
When having to select from 300
endpoints, flagship LLM’s failed our
tests in ~70% of test runs

Accuracy of AI Orchestration
60 APIs 300 APIs

Sonnet-4.5 ChaptGPT-5.1
0%

10%

20%

30%

40%

50%

60%

70%

Ac
cu

ra
cy

51.3%

30.1%

62.7%

49.4%

1



Adding even minimal
semantic metadata
improves planning accuracy

Accuracy of AI Orchestration
Impact of adding semantic metadata to 

OpenAPI

600 APIs 600 APIs with Semantic Metadata

Sonnet-4.5 ChaptGPT-5.1
0%

10%

20%

30%

40%

50%

60%

Ac
cu

ra
cy

30.9%

46.1% 46.4%

58.8%

A lightweight step teams can take
today with immediate, measurable
impact on LLM planning accuracy

2



Adopting a semantic layer
improves LLM planning accuracy
by 73-142%

AI agents using declarative query
languages (like TaxiQL) to express intent
dramatically outperformed LLMs
generating orchestration code directly

Accuracy of AI Orchestration
Raw agentic planning vs using Taxi+TaxiQL

600 APIs 600 APIs with Taxi + TaxiQL

Sonnet-4.5 ChaptGPT-5.1
0%

20%

40%

60%

80%

100%

Ac
cu

ra
cy

30.9%

74.7%

46.4%

85.5%

3



Using Taxi to describe data sources
reduces token usage by up to 80%
Taxi is an alternative schema language.

Adoption results in reduced token usage (driving down cost),
while also improving LLM performance via higher-density
context.

4



The Task
Building a plan to call the right APIs in the right order



Methodology - Task
LLMs were provided with a collection of OpenAPI specs (tested at multiple volumes) and a
development task that had to be implemented.

The solution required orchestrating the right 5 APIs in order.

LLMs needed to tackle real-world challenges, such as:

Identify the correct endpoints to call
Recognize and resolve different ID schemes across APIs
Select the correct data attributes from complex response objects



Methodology - The Task

From: Sarah Angle-brackets, Senior Equity Trader
To: Development Team
Subject: Need trade impact checker before I submit orders

Hi team,
I need a tool that helps me understand what's going to happen before I execute large trades. 

Right now I submit orders blindly and sometimes run into problems after the fact.
Here's what I need to know before I click "submit":

What's my current position in this stock and what will it be after the trade?
Will this trade push me over any of my risk limits? I don't want compliance breathing down my neck
What's the market telling me - am I going to get a good fill or will I move the market?
Are there any corporate actions coming up I should know about? (Last month I bought right before a dividend ex-date and didn't realize)
What's this going to do to my VaR? Risk management asks me about this all the time
The input would just be what I'm planning to trade - the stock (I usually work with tickers or sometimes I have the ISIN from a client), how much I want to buy or sell, and
on which book.
The output should tell me if it's safe to proceed or if I need to get approval first. I want to see everything in one place so I don't have to check five different systems.

 Can you build something that does this?
 Thanks,
 Sarah

LLM’s were provided an email outlining requirements from a ficticious bank. This scenario was designed to mirror real-world trading
workflows at tier-one banks.



Methodology



Methodology - Scoring
The Plan is what matters

Agents were only scored on their ability to describe a correct plan.
Results weren’t penalized for incorrect or non-compiling code

How results were scored
A scoring sheet defined the key elements agents needed to articulate
We used multiple LLMs as judges in a multi-stage review process: 

Initial LLM scored results against the scoring sheet (GPT-5.1)
Second LLM critiqued the initial scores (Gemini-2.5-Pro)
Original LLM reviewed critiques and finalized its scoring (GPT-5.1)

A final LLM collated all feedback and produced the final scores (GPT-5.1)
Judges evaluated only the plan output and were blind to the experimental condition and hypothesis.

Iterations
Each scenario was run against an LLM 30 times, and the scores were averaged



Methodology - Success Criteria
AI Agents were required to provide a plan, which

Selected the 5 correct API endpoints (path + verb)
Identify that ID’s didn’t match up, and include ID resolultion calls 
API Calls needed to be ordered correctly
Describe requires business logic (Pseduocode or plain text description OK)
Consider failure scenarios, and describe a reasonable strategy for handling an
unhappy path



Methodology - Model Selection

Based on performance in the baseline tests, remaining
tests were only performed on Sonnet-4.5 and ChatGPT-
5.1

Initial tests were performed on flagship models, as well as the
top trending models on OpenRouter for Coding tasks.



Results



Orchestrate 5 APIs from a population of 60
(Baseline)



Orchestrate 5 APIs from a population of 300

Sonnet-4.5 ChaptGPT-5.1

Overall Score API Flow Correct Identifiers Business Logic Robustness
0%

10%

20%

30%

40%

50%

60%

Ac
cu

ra
cy

30.1%

49.4%

38.3%

54.0%

23.0%

60.0%

18.0%

36.7%

42.0%

20.0%

Sonnet-4.5
60 APIs 300 APIs

Overall Score API Flow Correct Identifiers Business Logic Robustness
0%

20%

40%

60%

80%

Ac
cu

ra
cy 51.3%

30.1%

79.4%

38.3%
42.0%

23.0%
15.0% 18.0%

54.0%

42.0%

ChatGPT-5.1
60 APIs 300 APIs

Overall Score API Flow Correct Identifiers Business Logic Robustness
0%

20%

40%

60%

80%

100%

Ac
cu

ra
cy 62.7%

49.4%

80.6%

54.0%
64.0% 60.0%

49.0%

36.7%

22.0% 20.0%



Orchestrate 5 APIs from a population of 600

Sonnet-4.5 ChaptGPT-5.1

Overall Score API Flow Correct Identifiers Business Logic Robustness
0%

10%

20%

30%

40%

50%

60%

70%

Ac
cu

ra
cy

30.9%

46.4%

37.5%

58.4%

22.5%

62.4%

19.4%

41.3%

50.0%

22.4%

Sonnet-4.5
60 APIs 300 APIs 600 APIs

Overall Score API Flow Correct Identifiers Business Logic Robustness
0%

20%

40%

60%

80%

Ac
cu

ra
cy 51.3%

30.1% 30.9%

79.4%

38.3% 37.5%
42.0%

23.0% 22.5%

15.0%
18.0% 19.4%

54.0%

42.0%

50.0%

ChatGPT-5.1
60 APIs 300 APIs 600 APIs

Overall Score API Flow Correct Identifiers Business Logic Robustness
0%

20%

40%

60%

80%

100%

Ac
cu

ra
cy 62.7%

49.4% 46.4%

80.6%

54.0%
58.4%

64.0%
60.0% 62.4%

49.0%

36.7%
41.3%

22.0% 20.0% 22.4%



Observations
With ~60 APIs, both flagship models achieved usable baseline accuracy:

ChatGPT-5.1: ~49–63% overall, depending on metric
Sonnet-4.5: ~30–51% overall

Other tested models underperformed at this scale and were excluded from larger-scale tests.

Flagship models perform adequately only at small scale

Accuracy drops sharply as API surface area increases from 60 → 300
endpoints
Key planning tasks degraded substantially:

Overall accuracy fell by ~20–30 percentage points
Correct identifier resolution dropped by ~35–40 percentage points
API flow accuracy dropped by ~25–40 percentage points

 This decline was consistent across both models.



Observations
Performance stabilises beyond ~300 endpoints.
Increasing the API population from 300 → 600 endpoints resulted in minimal additional degradation (typically ≤5
percentage points across metrics), indicating an early complexity threshold rather than linear decay.

Planning failures are concentrated in reasoning-heavy tasks.
The steepest declines occurred in:

Selecting the correct APIs
Resolving identifiers across systems
Expressing correct business logic

Lower-level robustness metrics were less affected by scale.



Observations
ChatGPT-5.1 consistently outperformed Sonnet-4.5 across planning dimensions.
Across all scales tested, ChatGPT-5.1 scored higher on:

API flow (by ~15–30 points)
Correct identifier usage (by ~20–40 points)
Business logic expression (by ~15–25 points)

The performance gap widens with scale.
Differences between the models were modest at 60 APIs, but increased materially at 300 and 600 APIs,
suggesting stronger resilience to combinatorial planning complexity in ChatGPT-5.1.



Semantic Layer



Adding a semantic Layer

Prompts were updated to instruct the LLMs to:

Semantic metadata was introduced into the OpenAPI specs (using the Taxi OpenAPI
format), and scenarios re-tested against 600 API endpoints.

No other changes were made to the experiment setup.

Notably, the LLMs were not given any additional explanation or training on semantic
metadata, Taxi, TaxiQL, or the Taxi format beyond what was already present through
their base training.

“...consider semantic metadata (expressed via OpenAPI x-taxi-type annotations), which explicitly
describe the semantic meaning of data contained within each field.”



Orchestrate 5 APIs from a population of 600, with
semantic metadata in OpenAPI specs

Sonnet-4.5 ChaptGPT-5.1

Overall Score API Flow Correct Identifiers Business Logic Robustness
0%

20%

40%

60%

80%

Ac
cu

ra
cy 46.1%

58.8%

51.3%

68.3%

55.3%

75.6%

21.3%

38.9%

52.5%

21.3%

Sonnet-4.5
600 APIs 600 APIs w/Semantic Metadata

Overall Score API Flow Correct Identifiers Business Logic Robustness
0%

10%

20%

30%

40%

50%

60%

Ac
cu

ra
cy

30.9%

46.1%

37.5%

51.3%

22.5%

55.3%

19.4% 21.3%

50.0% 52.5%

ChatGPT-5.1
600 APIs 600 APIs w/Semantic Metadata

Overall Score API Flow Correct Identifiers Business Logic Robustness
0%

20%

40%

60%

80%

Ac
cu

ra
cy

46.4%

58.8% 58.4%

68.3%
62.4%

75.6%

41.3% 38.9%

22.4% 21.3%



Observations
Adding semantic metadata materially improves planning accuracy

Semantic metadata produced consistent accuracy gains across all planning dimensions.
When re-tested against 600 APIs, both models showed improvements in:

Overall planning accuracy (+12–15 percentage points)
API flow selection (+13–16 points)
Identifier resolution (+30–33 points)

Relative improvements were substantial despite no model or prompt tuning.

Improvements are attributable to added semantic signal, not the specific annotation format.



Key Takeaway

Even minimal semantic markup
significantly reduces planning
ambiguity for LLMs operating at scale.



Declarative Orchestration
Language
Using TaxiQL to express orchestration requirements



Prompts were updated to instruct the LLMs to:

Additionally, schemas were presented in Taxi format, rather than OpenAPI.

The LLMs were not provided with any additional explanation, fine-tuning, or training on Taxi
or TaxiQL beyond what was already present in their base training.

As with all tests, TaxiQL output was evaluated as a planning artefact, not as executable
code. Responses were scored on whether they represented a valid and complete expression
of data requirements; outputs were not penalised if the TaxiQL did not compile.

“Leveraging Taxi metadata, use the API query language TaxiQL to express data fetching
requirements. Where possible, defer API orchestration to the TaxiQL execution layer.”

Using TaxiQL to express orchestration requirements



TaxiQL compilation
We tracked TaxiQL syntactic correctness separately to maintain fair test
conditions.

TaxiQL syntactic correctness
(reference only - not scored in primary 

results)

Standard LLM TaxiQL Agent

Sonnet-4.5 ChaptGPT-5.1
0%

20%

40%

60%

80%

100%

Ac
cu

ra
cy 55.4%

86.4%

49.6%

79.1%

All test scenarios used the same base LLMs (Sonnet-4.5, ChatGPT-5.1)
without specialized code generation tooling. This ensured consistent
comparisons.

Our scoring measured planning intent - requesting the correct data,
ordering, and resolving identifiers - not syntactic perfection. Introducing
a TaxiQL-specific coding agent would have skewed comparisons in favor
of TaxiQL.

When we tested a specialized coding agent designed for TaxiQL
generation, compilation rates improved substantially, demonstrating
that syntactic correctness is achievable with appropriate tooling.

These rates are shown for transparency and do not factor into the study's
primary findings



In this test scenario, API specifications were provided in
Taxi format rather than OpenAPI.

Taxi - a dedicated schema language - required
~80% fewer tokens to represent the same
schemas, resulting in a substantially smaller
prompt context.

Taxi vs OpenAPI for expressing schemas

In addition, because Taxi represents semantic
relationships as first-class constructs, the remaining
tokens carried higher contextual density, improving the
signal-to-noise ratio available to the model.

Average token usage
Standard LLM

OpenAPI Taxi
0

10,000

20,000

30,000

40,000

50,000

60,000

70,000

To
ke

ns

62,337

12,542



Orchestrate 5 APIs from a population of 600, using
Taxi and TaxiQL

Sonnet-4.5 ChaptGPT-5.1

Overall Score API Flow Correct Identifiers Business Logic Robustness
0%

20%

40%

60%

80%

100%

Ac
cu

ra
cy

74.7%

85.5% 84.3%
90.0%

73.0%

94.3%

58.2%
63.1%

72.5%

37.9%

Sonnet-4.5
600 APIs 600 APIs w/Semantic Metadata 600 APIs with Taxi and TaxiQL

Overall Score API Flow Correct Identifiers Business Logic Robustness
0%

20%

40%

60%

80%

100%

Ac
cu

ra
cy

30.9%

46.1%

74.7%

37.5%

51.3%

84.3%

22.5%

55.3%

73.0%

19.4% 21.3%

58.2%
50.0% 52.5%

72.5%

ChatGPT-5.1
600 APIs 600 APIs w/Semantic Metadata 600 APIs with Taxi and TaxiQL

Overall Score API Flow Correct Identifiers Business Logic Robustness
0%

20%

40%

60%

80%

100%

Ac
cu

ra
cy

46.4%

58.8%

85.5%

58.4%

68.3%

90.0%

62.4%

75.6%

94.3%

41.3% 38.9%

63.1%

22.4% 21.3%

37.9%



Observations

Expressing orchestration requirements declaratively produced the largest accuracy gains observed in the
study.
When planning was expressed using TaxiQL (with schemas provided in Taxi format), overall planning accuracy
increased by:

Sonnet-4.5: 30.0% → 74.7% (~142% relative increase )
ChatGPT-5.1: 46.4% → 80.5% (~73% relative increase)

relative to the unassisted baseline.

Improvements were strongest in reasoning-heavy tasks.
Compared to semantic metadata alone, TaxiQL produced substantial additional gains in:

Correct identifier resolution (up to +50 percentage points)
API flow planning (up to +45 points)
Business logic expression (up to +35 points)

Declarative orchestration dramatically improves planning
accuracy



Observations
Declarative orchestration dramatically improves planning
accuracy
Gains were achieved without additional model training or fine-tuning.
The LLMs received no TaxiQL-specific instruction beyond prompt guidance; improvements arise from structural
changes in how requirements are expressed, not from model adaptation.

This indicates that even though TaxiQL remains a niche language, it’s been around long enough that it has already
been scraped and learnt by LLM base training, sufficiently to express requirements in a planning scenario

Accuracy gains compound with reduced context size.
Taxi + TaxiQL simultaneously:

reduced prompt size by ~80%, and
increased semantic density per token,
 improving both planning reliability and cost efficiency.



Key Takeaway

Using a semantic, declarative layer
(Taxi + TaxiQL) increased planning
accuracy by 73–142%,
while reducing token usage by up to
80%.



Overall performance



Performance by scenario - Sonnet 4.5
60 APIs 300 APIs 600 APIs 600 APIs w/Semantic Metadata

600 APIs w/TaxiQL

Overall Score API Flow Correct Identifiers Business Logic Robustness
0%

20%

40%

60%

80%

100%

51.3%

30.1% 30.9%

46.1%

74.7%
79.4%

38.3% 37.5%

51.3%

84.3%

42.0%

23.0% 22.5%

55.3%

73.0%

15.0%
18.0% 19.4% 21.3%

58.2%
54.0%

42.0%

50.0%
52.5%

72.5%



Performance by scenario - ChatGPT-5.1
60 APIs 300 APIs 600 APIs 600 APIs w/Semantic Metadata

600 APIs w/TaxiQL

Overall Score API Flow Correct Identifiers Business Logic Robustness
0%

20%

40%

60%

80%

100%

62.7%

49.4%
46.4%

58.8%

81.0% 80.6%

54.0%
58.4%

68.3%

90.0%

64.0%
60.0%

62.4%

75.6%

94.3%

49.0%

36.7%
41.3%

38.9%

63.1%

22.0% 20.0%
22.4% 21.3%

37.9%



hello@orbitalhq.com orbitalhq.com


