Understanding the impact of a Semantic Layer
in Agentic APl Orchestration accuracy

orboital

Introduction

orbital

Introduction

How good are LLM'’s at building a plan
requiring orchestrating multiple APIs
together?

We recently completed a large scale study into the accuracy of leading LLM’s at planning
orchestration under real-world conditions.

This paper presents the research, the methodology, and results.

orbital

Research Goal

We wanted to answer three key questions:

1 How well do LLM’s perform at APl orchestration when facing real-world
complexity (hundreds of endpoints)?

2 Does adding semantic metadata improve their accuracy?

Does the adoption of a declarative orchestration language make a
3 difference?

orbital

Executive Summary

4 key takeaways from our research

orbital

1 Accuracy of Al Orchestration

©® 60 APIs @ 300 APIs
70%

Planning accuracy falls to
unusable levels between _
60 to 300 endpoints

When having to select from 300 < o
endpoints, flagship LLM’s failed our o
tests in ~70% of test runs

60%

10%

0%

Sonnet-4.5 ChaptGPT-5.1

orbital

Accuracy of Al Orchestration

Impact of adding semantic metadata to
OpenAPI

2

@® 600 APIs @ 600 APIs with Semantic Metadata
60%

Adding even minimal
semantic metadata
iImproves planning accuracy *

30%

50%

Accuracy

A lightweight step teams can take
today with immediate, measurable 0%
Impact on LLM p\anmng accuracy

10%

0%

Sonnet-4.5 ChaptGPT-5.1

orbital

Accuracy of Al Orchestration
Raw agentic planning vs using Taxi+TaxiQL

Adopting a semantic layer B, © 7 e
improves LLM planning accuracy
by 73-142%

60%

Al agents using declarative query
languages (like TaxiQL) to express intent = .
dramatically outperformed LLMs

generating orchestration code directly 0%

Accuracy

0%

Sonnet-4.5 ChaptGPT-5.1

orbital

i |

Using Taxi to describe data sources
reduces token usage by up to 80%

Taxi Is an alternative schema language.

Adoption results in reduced token usage (driving down cost),
while also improving LLM performance via higher-density
context.

orbital

The Task

Buillding a plan to call the right APIs In the right order

orbital

Methodology - Task

LLMs were provided with a collection of OpenAPI specs (tested at multiple volumes) and a
development task that had to be implemented.

The solution required orchestrating the right 5 APIs in order.

LLMs needed to tackle real-world challenges, such as:

 |dentify the correct endpoints to call
e Recognize and resolve different ID schemes across APlIs
o Select the correct data attributes from complex response objects

orbital

Methodology - The Task

LLM’s were provided an email outlining requirements from a ficticious bank. This scenario was designed to mirror real-world trading
workflows at tier-one banks.

From: Sarah Angle-brackets, Senior Equity Trader

To: Development Team
Subject: Need trade impact checker before | submit orders

Hi team,
| need a tool that helps me understand what's going to happen before | execute large trades.

Right now | submit orders blindly and sometimes run into problems after the fact.

Here's what | need to know before | click "submit":
e What's my current position in this stock and what will it be after the trade?
e Will this trade push me over any of my risk limits? | don't want compliance breathing down my neck
e What's the market telling me - am | going to get a good fill or will | move the market?
e Are there any corporate actions coming up | should know about? (Last month | bought right before a dividend ex-date and didn't realize)
e What's this going to do to my VaR? Risk management asks me about this all the time
e The input would just be what I'm planning to trade - the stock (I usually work with tickers or sometimes | have the ISIN from a client), how much | want to buy or sell, and

on which book.
e The output should tell me if it's safe to proceed or if | need to get approval first. | want to see everything in one place so | don't have to check five different systems.

Can you build something that does this?
Thanks,
SEIE]

orbital

Methodology

orbital

Methodology - Scoring

The Plan Is what matters

e Agents were only scored on their ability to describe a correct plan.
e Results weren't penalized for incorrect or non-compiling code

How results were scored

e A scoring sheet defined the key elements agents needed to articulate
e We used multiple LLMs as judges in a multi-stage review process:
o Initial LLM scored results against the scoring sheet (GPT-5.1)
o Second LLM critiqued the initial scores (Gemini-2.5-Pro)
o Original LLM reviewed critigues and finalized its scoring (GPT-5.1)
e A final LLM collated all feedback and produced the final scores (GPT-5.1)
Judges evaluated only the plan output and were blind to the experimental condition and hypothesis.

lterations

e Each scenario was run against an LLM 30 times, and the scores were averaged

orbital

Methodology - Success Criteria

Al Agents were required to provide a plan, which

e Selected the 5 correct AP| endpoints (path + verb)

e |dentify that ID’s didn’t match up, and include ID resolultion calls

e API| Calls needed to be ordered correctly

e Describe requires business logic (Pseduocode or plain text description OK)

e Consider failure scenarios, and describe a reasonable strategy for handling an
unhappy path

orbital

Methodology - Model Selection

Initial tests were performed on flagship models, as well as the
top trending models on OpenRouter for Coding tasks.

Based on performance in the baseline tests, remaining
tests were only performed on Sonnet-4.5 and ChatGPT-
5.1

orbital

Results

orbital

Orchestrate 5 APIs from a population of 60

100.0%

75.0%

50.0%

Accuracy

25.0%

GEEE)

Overall Score API| Flow Correct ldentifiers Etusmess L-:rglc Robustness

0.0%

® Sonnet-4.5 ® ChatGPT-5.1 = Gemini-2.5-flash = grok-code-fast-1 ® minimax-m2

orbital

Orchestrate 5 APIs from a population of 300

60%

50%

40%

30%

Accuracy

20%

10%

0%

orbital

30.1%

Overall Score

Sonnet-4.5 @ ChaptGPT-5.1

38.3%

API Flow

23.0%

18.0%

Correct Identifiers Business Logic

42.0%

Robustness

80%

60%

40%

Accuracy

20%

0%

100%

80%

60%

Accuracy

40%

20%

0%

51.3%

30.1%

Overall Score

62.7%
49.4%

Overall Score

Sonnet-4.5
60 APIs 300 APIs
79.4%
42.0%
38.3%
23.0%
15.0% U0
API Flow Correct Identifiers Business Logic
ChatGPT-5.1
60 APIs 300 APIs
80.6%
64.0% 60.0%
54.0%
49.0%
36.7%
API Flow Correct Identifiers Business Logic

54.0%

42.0%

Robustness

22.0% [20.0%

Robustness

Orchestrate 5 APIs from a population of 600

70%

60%

50%

40%

Accuracy

30%

20%

10%

0%

orbital

30.9%

Overall Score

Sonnet-4.5 @ ChaptGPT-5.1

37.5%

API Flow

22.5%
19.4%

Correct Identifiers Business Logic

50.0%

Robustness

80%

60%

40%

Accuracy

20%

0%

100%

80%

60%

40%

Accuracy

20%

0%

Sonnet-4.5
60 APIs 300 APIs @ 600 APIs
79.4%
51.3% 54.0%
42.0% 42.0%
38.3%
20:4130.9%
23.0% o
15.0% 100% B
Overall Score API Flow Correct Identifiers Business Logic Robustness
ChatGPT-5.1
60 APIs 300 APIs @ 600 APIs
80.6%
0 4.0%
eette 040% 50.0%
54.0%
49.4% 49.0%
36.7%
22.0% 2010%
Overall Score API Flow Correct Identifiers Business Logic Robustness

Observations

Flagship models perform adequately only at small scale

With ~60 APIs, both flagship models achieved usable baseline accuracy:
e ChatGPT-5.1: ~49-63% overall, depending on metric
e Sonnet-4.5: ~30-51% overall

Other tested models underperformed at this scale and were excluded from larger-scale tests.

Accuracy drops sharply as API surface area increases from 60 »> 300
endpoints

Key planning tasks degraded substantially:
e Overall accuracy fell by ~20-30 percentage points
e Correctidentifier resolution dropped by ~35-40 percentage points
e API flow accuracy dropped by ~25-40 percentage points
This decline was consistent across both models.
orbital

Observations

Performance stabilises beyond ~300 endpoints.

Increasing the API population from 300 - 600 endpoints resulted in minimal additional degradation (typically =5
percentage points across metrics), indicating an early complexity threshold rather than linear decay.

Planning failures are concentrated in reasoning-heavy tasks.

The steepest declines occurred in:
e Selecting the correct APIs
e Resolving identifiers across systems
e Expressing correct business logic
Lower-level robustness metrics were less affected by scale.

orbital

Observations

ChatGPT-5.1 consistently outperformed Sonnet-4.5 across planning dimensions.

Across all scales tested, ChatGPT-5.1 scored higher on:
e API flow (by ~15-30 points)
e Correct identifier usage (by ~20-40 points)
e Business logic expression (by ~15-25 points)

The performance gap widens with scale.

Differences between the models were modest at 60 APIs, but increased materially at 300 and 600 APIs,
suggesting stronger resilience to combinatorial planning complexity in ChatGPT-5.1.

orbital

Semantic Layer

orbital

Adding a semantic Layer

Semantic metadata was introduced into the OpenAPI specs (using the Taxi OpenAPI
format), and scenarios re-tested against 600 API endpoints.

Prompts were updated to instruct the LLMs to:

“...consider semantic metadata (expressed via OpenAPI x-taxi-type annotations), which explicitly
describe the semantic meaning of data contained within each field.”

No other changes were made to the experiment setup.

Notably, the LLMs were not given any additional explanation or training on semantic
metadata, Taxi, TaxiQL, or the Taxi format beyond what was already present through
their base training.

orbital

Orchestrate 5 APIs from a population of 600, with
semantic metadata in OpenAPI specs

Sonnet-4.5
Sonnet-4.5 @ ChaptGPT-5.1 .
@ 600 APIs 600 APIs w/Semantic Metadata
80% 60%
55.3%
50% 51.3% 52.5%
46.1%
40%
>
O
o
3 30%
60% <
20% 21.3%
935.3%
10%
o
51.3% 92.9%
0%
(>)~ 46.1% Overall Score API Flow Correct Identifiers Business Logic Robustness
@®©
§ 40%
<
ChatGPT-5.1
@ 600 APIs 600 APIs w/Semantic Metadata
80%
. 75.6%
20% 21.3% 68.3%
60%
58.8%
>
(@]
o
S 40%
3 38.9%
<
A 20%
Overall Score API Flow Correct Identifiers Business Logic Robustness

22.4% § kb
0%

- Overall Score API Flow Correct Identifiers Business Logic Robustness
orboital

Observations

Adding semantic metadata materially improves planning accuracy

Semantic metadata produced consistent accuracy gains across all planning dimensions.
When re-tested against 600 APIs, both models showed improvements in:

e Overall planning accuracy (+12-15 percentage points)

e API flow selection (+13-16 points)

e |dentifier resolution (+30-33 points)

Relative improvements were substantial despite no model or prompt tuning.

Improvements are attributable to added semantic signal, not the specific annotation format.

orbital

Key Takeaway

Even minimal semantic markup
significantly reduces planning
ambiguity for LLMs operating at scale.

orbital

Declarative Orchestration
Language

Using TaxiQL to express orchestration requirements

orbital

Using TaxiQL to express orchestration requirements

Prompts were updated to instruct the LLMs to:

“Leveraging Taxi metadata, use the API query language TaxiQL to express data fetching
requirements. Where possible, defer API orchestration to the TaxiQL execution layer.”

Additionally, schemas were presented in Taxi format, rather than OpenAPI.

The LLMs were not provided with any additional explanation, fine-tuning, or training on Taxi
or TaxiQL beyond what was already present in their base training.

As with all tests, TaxiQL output was evaluated as a planning artefact, not as executable
code. Responses were scored on whether they represented a valid and complete expression

of data requirements; outputs were not penalised if the TaxiQL did not compile.

orbital

TaxiQL syntactic correctness

TaXiQL COmpilatiOn (reference only - not scored in primary

results)

We tracked TaxiQL syntactic correctness separately to maintain fair test ® SandardLLM @ TaxiQl Agent

conditions. 100%

All test scenarios used the same base LLMs (Sonnet-4.5, ChatGPT-5.1)
without specialized code generation tooling. This ensured consistent

comparisons. 80%

Our scoring measured planning intent - requesting the correct data,

ordering, and resolving identifiers - not syntactic perfection. Introducing _ 60%
a TaxiQL-specific coding agent would have skewed comparisons in favor §
of TaxiQL. S

40%
When we tested a specialized coding agent designed for TaxiQL

generation, compilation rates improved substantially, demonstrating

that syntactic correctness is achievable with appropriate tooling. 20%

0%
These rates are shown for transparency and do not factor into the study's Sonnet-4.5 ChaptGPT-5.1

primary findings

orbital

Taxi vs OpenAPI for expressing schemas

Average token usage

@ Standard LLM

In this test scenario, API specifications were provided in 70000

Taxi format rather than OpenAPI. 50 000

Taxi - a dedicated schema language - required 50,000
~80% fewer tokens to represent the same
schemas, resulting in a substantially smaller
prompt context.

40,000

Tokens

30,000

20,000
In addition, because Taxi represents semantic

relationships as first-class constructs, the remaining 10,000
tokens carried higher contextual density, improving the
signal-to-noise ratio available to the model. OpenAP! Taxi

orbital

Orchestrate 5 APIs from a population of 600, using
Taxi and TaxiQL

100%

80%

60%

Accuracy

40%

20%

0%

orbital

74.7%

Overall Score

Sonnet-4.5

84.3%

API Flow

@ ChaptGPT-5.1

73.0%

58.2%

Correct Identifiers Business Logic

72.5%

Robustness

100%

80%

60%

Accuracy

40%

20%

0%

100%

80%

60%

Accuracy

40%

20%

0%

@ 600 APIs

46.1%

74.7%

Overall Score

@ 600 APIs

58.8%

85.5%

Overall Score

58.4%

Sonnet-4.5

600 APIs w/Semantic Metadata 600 APIs with Taxi and TaxiQL

84.3%

73.0% 72.5%

55.3% 58.2%

51.3% 52.5%

22.5%

Correct Identifiers

19.4% |54

API Flow Business Logic Robustness

ChatGPT-3.1

600 APIs w/Semantic Metadata 600 APIs with Taxi and TaxiQL

94.3%
90.0%

75.6%

68.3%
63.1%
22.4% X belA
API Flow Correct Identifiers Business Logic Robustness

Observations

Declarative orchestration dramatically improves planning
accuracy

Expressing orchestration requirements declaratively produced the largest accuracy gains observed in the

study.
When planning was expressed using TaxiQL (with schemas provided in Taxi format), overall planning accuracy

increased by:
e Sonnet-4.5:30.0% > 74.7% (~142% relative increase)
e ChatGPT-5.1:46.4% > 80.5% (~73% relative increase)
relative to the unassisted baseline.

Improvements were strongest in reasoning-heavy tasks.

Compared to semantic metadata alone, TaxiQL produced substantial additional gains in:
e Correct identifier resolution (up to +50 percentage points)
e API flow planning (up to +45 points)

e Business logic expression (up to +35 points)
orbital

Observations

Declarative orchestration dramatically improves planning
accuracy

Gains were achieved without additional model training or fine-tuning.
The LLMs received no TaxiQL-specific instruction beyond prompt guidance; improvements arise from structural

changes in how requirements are expressed, not from model adaptation.

This indicates that even though TaxiQL remains a niche language, it's been around long enough that it has already
been scraped and learnt by LLM base training, sufficiently to express requirements in a planning scenario

Accuracy gains compound with reduced context size.
Taxi + TaxiQL simultaneously:

e reduced prompt size by ~80%, and

e increased semantic density per token,

e improving both planning reliability and cost efficiency.

orbital

Key Takeaway

Using a semantic, declarative layer
(Taxi + TaxiQL) increased planning
accuracy by 73-142%,

while reducing token usage by up to
80%.

orbital

Overall performance

orbital

Performance by scenario - Sonnet 4.5

@ GOAPIs @ 300APIs @ 600 APIs @ 600 APIs w/Semantic Metadata

¢ 600 APIs w/TaxiQL

100%

80%

60%

40%

20%

0%
Overall Score API Flow Correct Identifiers Business Logic Robustness

orbital

Performance by scenario - ChatGPT-5.1

@ GOAPIs @ 300APIs @ 600 APIs @ 600 APIs w/Semantic Metadata

¢ 600 APIs w/TaxiQL
100%

80%
60%
40%

20%

0%
Overall Score API Flow Correct Identifiers Business Logic Robustness

orbital

elgeli{e]

hello@orbitalhg.com orbitalhg.com

